Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform.
A Fourier transform technique is introduced for counting the number of solutions of holomorphic moment map equations over a finite field. This technique in turn gives information on Betti numbers of holomorphic symplectic quotients. As a consequence, simple unified proofs are obtained for formulas o...
Yazar: | Hausel, T |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
2006
|
Benzer Materyaller
-
Graded Betti numbers of ideals with linear quotient
Yazar:: Leila Sharifan, ve diğerleri
Baskı/Yayın Bilgisi: (2008-11-01) -
PARTIAL DESINGULARIZATIONS OF QUOTIENTS OF NONSINGULAR VARIETIES AND THEIR BETTI NUMBERS
Yazar:: Kirwan, F
Baskı/Yayın Bilgisi: (1985) -
On localization and Riemann-Roch numbers for symplectic quotients
Yazar:: Jeffrey, L, ve diğerleri
Baskı/Yayın Bilgisi: (1996) -
On the group of zero-cycles of holomorphic symplectic varieties
Yazar:: Alina Marian, ve diğerleri
Baskı/Yayın Bilgisi: (2020-03-01) -
Topological invariants of symplectic quotients
Yazar:: Metzler, David S. (David Scott)
Baskı/Yayın Bilgisi: (2008)