On the evaluation complexity of constrained nonlinear least-squares and general constrained nonlinear optimization using second-order methods
<p style="text-align:justify;"> When solving the general smooth nonlinear and possibly nonconvex optimization problem involving equality and/or inequality constraints, an approximate first-order critical point of accuracy $\epsilon$ can be obtained by a second-order method using cub...
Main Authors: | , , |
---|---|
Format: | Journal article |
Published: |
Society for Industrial and Applied Mathematics
2015
|