On the evaluation complexity of constrained nonlinear least-squares and general constrained nonlinear optimization using second-order methods

<p style="text-align:justify;"> When solving the general smooth nonlinear and possibly nonconvex optimization problem involving equality and/or inequality constraints, an approximate first-order critical point of accuracy $\epsilon$ can be obtained by a second-order method using cub...

詳細記述

書誌詳細
主要な著者: Cartis, C, Gould, N, Toint, P
フォーマット: Journal article
出版事項: Society for Industrial and Applied Mathematics 2015