Particle Markov chain Monte Carlo methods
Markov chain Monte Carlo and sequential Monte Carlo methods have emerged as the two main tools to sample from high dimensional probability distributions. Although asymptotic convergence of Markov chain Monte Carlo algorithms is ensured under weak assumptions, the performance of these algorithms is u...
主要な著者: | Andrieu, C, Doucet, A, Holenstein, R |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2010
|
類似資料
-
Particle Markov chain Monte Carlo for efficient numerical simulation
著者:: Andrieu, C, 等
出版事項: (2009) -
On nonlinear Markov chain Monte Carlo
著者:: Andrieu, C, 等
出版事項: (2011) -
Interacting particle Markov chain Monte Carlo
著者:: Doucet, A, 等
出版事項: (2016) -
On Markov chain Monte Carlo Methods for Tall Data
著者:: Bardenet, R, 等
出版事項: (2017) -
SEQUENTIALLY INTERACTING MARKOV CHAIN MONTE CARLO METHODS
著者:: Brockwell, A, 等
出版事項: (2010)