Particle Markov chain Monte Carlo methods
Markov chain Monte Carlo and sequential Monte Carlo methods have emerged as the two main tools to sample from high dimensional probability distributions. Although asymptotic convergence of Markov chain Monte Carlo algorithms is ensured under weak assumptions, the performance of these algorithms is u...
Главные авторы: | Andrieu, C, Doucet, A, Holenstein, R |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
2010
|
Схожие документы
-
Particle Markov chain Monte Carlo for efficient numerical simulation
по: Andrieu, C, и др.
Опубликовано: (2009) -
On nonlinear Markov chain Monte Carlo
по: Andrieu, C, и др.
Опубликовано: (2011) -
Interacting particle Markov chain Monte Carlo
по: Doucet, A, и др.
Опубликовано: (2016) -
On Markov chain Monte Carlo Methods for Tall Data
по: Bardenet, R, и др.
Опубликовано: (2017) -
SEQUENTIALLY INTERACTING MARKOV CHAIN MONTE CARLO METHODS
по: Brockwell, A, и др.
Опубликовано: (2010)