SU(2)-invariant continuum theory for an unconventional phase transition in a three-dimensional classical dimer model.
We derive a continuum theory for the phase transition in a classical dimer model on the cubic lattice, observed in recent Monte Carlo simulations. Our derivation relies on the mapping from a three-dimensional classical problem to a two-dimensional quantum problem, by which the dimer model is related...
Κύριοι συγγραφείς: | Powell, S, Chalker, J |
---|---|
Μορφή: | Journal article |
Γλώσσα: | English |
Έκδοση: |
2008
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Classical to quantum mapping for an unconventional phase transition in a
three-dimensional classical dimer model
ανά: Powell, S, κ.ά.
Έκδοση: (2009) -
Scale and confinement phase transitions in scale invariant SU(N) scalar gauge theory
ανά: Jisuke Kubo, κ.ά.
Έκδοση: (2018-10-01) -
Ashkin-Teller phase transition and multicritical behavior in a classical monomer-dimer model
ανά: Satoshi Morita, κ.ά.
Έκδοση: (2023-10-01) -
Phase transitions in three-dimensional loop models and the CPn-1 sigma model
ανά: Nahum, A, κ.ά.
Έκδοση: (2013) -
THE UPPER CRITICAL DIMENSIONALITY OF A CLASS OF STRUCTURAL PHASE-TRANSITIONS
ανά: Chalker, J
Έκδοση: (1980)