Deep learning approaches to multimodal MRI brain age estimation
<p>Brain ageing remains an intricate, multifaceted process, marked not just by chronological time but by a myriad of structural, functional, and microstructural changes that often lead to discrepancies between actual age and the age inferred from neuroimaging. Machine learning methods, and esp...
Главный автор: | Roibu, A-C |
---|---|
Другие авторы: | Griffanti, L |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2023
|
Предметы: |
Схожие документы
-
Machine Learning and Deep Learning Approaches in Lifespan Brain Age Prediction: A Comprehensive Review
по: Yutong Wu, и др.
Опубликовано: (2024-08-01) -
Machine Learning in Acute Stroke Neuroimaging. A Systematic Literature Review
по: D. Matuliauskas, и др.
Опубликовано: (2023-10-01) -
Improving Individual Brain Age Prediction Using an Ensemble Deep Learning Framework
по: Chen-Yuan Kuo, и др.
Опубликовано: (2021-03-01) -
Investigating the role of inhibition in human motor learning
по: Grigoras, IF
Опубликовано: (2022) -
Artificial intelligence for diffusion MRI-based tissue microstructure estimation in the human brain: an overview
по: Abrar Faiyaz, и др.
Опубликовано: (2023-04-01)