Decidability of membership problems for flat rational subsets of GL (2, Q) and singular matrices
<p>This work relates numerical problems on matrices over the rationals to symbolic algorithms on words and finite automata. Using exact algebraic algorithms and symbolic computation, we prove new decidability results for 2 × 2 matrices over Q. Namely, we introduce a notion of flat rational set...
Главные авторы: | Diekert, V, Potapov, I, Semukhin, P |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
Association for Computing Machinery
2020
|
Схожие документы
-
Membership problem in GL(2, Z) extended by singular matrices
по: Potapov, I, и др.
Опубликовано: (2017) -
Decidability of the membership problem for 2 x 2 integer matrices
по: Potapov, I, и др.
Опубликовано: (2017) -
On the decidability of membership in matrix-exponential semigroups
по: Ouaknine, J, и др.
Опубликовано: (2019) -
The Competence of the Judicial Authority in Deciding the Validity of Parliamentary Membership
по: Faysal shatnawy
Опубликовано: (2015-12-01) -
The membership problem for hypergeometric sequences with rational parameters
по: Nosan, K, и др.
Опубликовано: (2022)