Rapidly exploring learning trees

Inverse Reinforcement Learning (IRL) for path planning enables robots to learn cost functions for difficult tasks from demonstration, instead of hard-coding them. However, IRL methods face practical limitations that stem from the need to repeat costly planning procedures. In this paper, we propose R...

詳細記述

書誌詳細
主要な著者: Shiarlis, K, Messias, J, Whiteson, S
フォーマット: Conference item
出版事項: IEEE 2017

類似資料