Rapidly exploring learning trees
Inverse Reinforcement Learning (IRL) for path planning enables robots to learn cost functions for difficult tasks from demonstration, instead of hard-coding them. However, IRL methods face practical limitations that stem from the need to repeat costly planning procedures. In this paper, we propose R...
Principais autores: | Shiarlis, K, Messias, J, Whiteson, S |
---|---|
Formato: | Conference item |
Publicado em: |
IEEE
2017
|
Registros relacionados
-
Inverse reinforcement learning from failure
por: Shiarlis, K, et al.
Publicado em: (2016) -
TACO: Learning task decomposition via temporal alignment for control
por: Shiarlis, K, et al.
Publicado em: (2018) -
Dynamic-depth context tree weighting
por: Messias, J, et al.
Publicado em: (2018) -
Learning from demonstration in the wild
por: Behbahani, F, et al.
Publicado em: (2019) -
VariBAD: a very good method for Bayes-adaptive deep RL via meta-learning
por: Zintgraf, L, et al.
Publicado em: (2020)