Rapidly exploring learning trees
Inverse Reinforcement Learning (IRL) for path planning enables robots to learn cost functions for difficult tasks from demonstration, instead of hard-coding them. However, IRL methods face practical limitations that stem from the need to repeat costly planning procedures. In this paper, we propose R...
Hlavní autoři: | Shiarlis, K, Messias, J, Whiteson, S |
---|---|
Médium: | Conference item |
Vydáno: |
IEEE
2017
|
Podobné jednotky
-
Inverse reinforcement learning from failure
Autor: Shiarlis, K, a další
Vydáno: (2016) -
TACO: Learning task decomposition via temporal alignment for control
Autor: Shiarlis, K, a další
Vydáno: (2018) -
Dynamic-depth context tree weighting
Autor: Messias, J, a další
Vydáno: (2018) -
Learning from demonstration in the wild
Autor: Behbahani, F, a další
Vydáno: (2019) -
VariBAD: a very good method for Bayes-adaptive deep RL via meta-learning
Autor: Zintgraf, L, a další
Vydáno: (2020)