Rapidly exploring learning trees
Inverse Reinforcement Learning (IRL) for path planning enables robots to learn cost functions for difficult tasks from demonstration, instead of hard-coding them. However, IRL methods face practical limitations that stem from the need to repeat costly planning procedures. In this paper, we propose R...
Κύριοι συγγραφείς: | Shiarlis, K, Messias, J, Whiteson, S |
---|---|
Μορφή: | Conference item |
Έκδοση: |
IEEE
2017
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Inverse reinforcement learning from failure
ανά: Shiarlis, K, κ.ά.
Έκδοση: (2016) -
TACO: Learning task decomposition via temporal alignment for control
ανά: Shiarlis, K, κ.ά.
Έκδοση: (2018) -
Dynamic-depth context tree weighting
ανά: Messias, J, κ.ά.
Έκδοση: (2018) -
Learning from demonstration in the wild
ανά: Behbahani, F, κ.ά.
Έκδοση: (2019) -
VariBAD: a very good method for Bayes-adaptive deep RL via meta-learning
ανά: Zintgraf, L, κ.ά.
Έκδοση: (2020)