Rapidly exploring learning trees
Inverse Reinforcement Learning (IRL) for path planning enables robots to learn cost functions for difficult tasks from demonstration, instead of hard-coding them. However, IRL methods face practical limitations that stem from the need to repeat costly planning procedures. In this paper, we propose R...
Egile Nagusiak: | Shiarlis, K, Messias, J, Whiteson, S |
---|---|
Formatua: | Conference item |
Argitaratua: |
IEEE
2017
|
Antzeko izenburuak
-
Inverse reinforcement learning from failure
nork: Shiarlis, K, et al.
Argitaratua: (2016) -
TACO: Learning task decomposition via temporal alignment for control
nork: Shiarlis, K, et al.
Argitaratua: (2018) -
Dynamic-depth context tree weighting
nork: Messias, J, et al.
Argitaratua: (2018) -
Learning from demonstration in the wild
nork: Behbahani, F, et al.
Argitaratua: (2019) -
VariBAD: a very good method for Bayes-adaptive deep RL via meta-learning
nork: Zintgraf, L, et al.
Argitaratua: (2020)