Rapidly exploring learning trees
Inverse Reinforcement Learning (IRL) for path planning enables robots to learn cost functions for difficult tasks from demonstration, instead of hard-coding them. However, IRL methods face practical limitations that stem from the need to repeat costly planning procedures. In this paper, we propose R...
Auteurs principaux: | Shiarlis, K, Messias, J, Whiteson, S |
---|---|
Format: | Conference item |
Publié: |
IEEE
2017
|
Documents similaires
-
Inverse reinforcement learning from failure
par: Shiarlis, K, et autres
Publié: (2016) -
TACO: Learning task decomposition via temporal alignment for control
par: Shiarlis, K, et autres
Publié: (2018) -
Dynamic-depth context tree weighting
par: Messias, J, et autres
Publié: (2018) -
Learning from demonstration in the wild
par: Behbahani, F, et autres
Publié: (2019) -
VariBAD: a very good method for Bayes-adaptive deep RL via meta-learning
par: Zintgraf, L, et autres
Publié: (2020)