Rapidly exploring learning trees
Inverse Reinforcement Learning (IRL) for path planning enables robots to learn cost functions for difficult tasks from demonstration, instead of hard-coding them. However, IRL methods face practical limitations that stem from the need to repeat costly planning procedures. In this paper, we propose R...
Үндсэн зохиолчид: | Shiarlis, K, Messias, J, Whiteson, S |
---|---|
Формат: | Conference item |
Хэвлэсэн: |
IEEE
2017
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Inverse reinforcement learning from failure
-н: Shiarlis, K, зэрэг
Хэвлэсэн: (2016) -
TACO: Learning task decomposition via temporal alignment for control
-н: Shiarlis, K, зэрэг
Хэвлэсэн: (2018) -
Dynamic-depth context tree weighting
-н: Messias, J, зэрэг
Хэвлэсэн: (2018) -
Learning from demonstration in the wild
-н: Behbahani, F, зэрэг
Хэвлэсэн: (2019) -
VariBAD: a very good method for Bayes-adaptive deep RL via meta-learning
-н: Zintgraf, L, зэрэг
Хэвлэсэн: (2020)