Equal sums in random sets and the concentration of divisors
We study the extent to which divisors of a typical integer n are concentrated. In particular, defining Δ(𝑛):=max𝑡#{𝑑|𝑛,log𝑑∈[𝑡,𝑡+1]}, we show that Δ(𝑛)⩾(loglog𝑛)0.35332277… for almost all n, a bound we believe to be sharp. This disproves a conjecture of Maier and Tenenbaum. We also prove analogs for...
Autori principali: | Ford, K, Green, B, Koukoulopoulos, D |
---|---|
Natura: | Journal article |
Lingua: | English |
Pubblicazione: |
Springer
2023
|
Documenti analoghi
-
On a Sum Involving the Sum-of-Divisors Function
di: Feng Zhao, et al.
Pubblicazione: (2021-01-01) -
On the sum of positive divisors functions
di: Erban, R, et al.
Pubblicazione: (2021) -
On the divisor sums in arithmetical progressions
di: Eugenijus Stankus
Pubblicazione: (1998-12-01) -
A Paradigmatic Approach to Find Equal Sum Partitions of Zero-Divisors via Complete Graphs
di: M. Haris Mateen, et al.
Pubblicazione: (2022-01-01) -
Moments of zeta and correlations of divisor-sums: V
di: Conrey, B, et al.
Pubblicazione: (2018)