Equal sums in random sets and the concentration of divisors
We study the extent to which divisors of a typical integer n are concentrated. In particular, defining Δ(𝑛):=max𝑡#{𝑑|𝑛,log𝑑∈[𝑡,𝑡+1]}, we show that Δ(𝑛)⩾(loglog𝑛)0.35332277… for almost all n, a bound we believe to be sharp. This disproves a conjecture of Maier and Tenenbaum. We also prove analogs for...
主要な著者: | Ford, K, Green, B, Koukoulopoulos, D |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Springer
2023
|
類似資料
-
On a Sum Involving the Sum-of-Divisors Function
著者:: Feng Zhao, 等
出版事項: (2021-01-01) -
On the sum of positive divisors functions
著者:: Erban, R, 等
出版事項: (2021) -
On the divisor sums in arithmetical progressions
著者:: Eugenijus Stankus
出版事項: (1998-12-01) -
A Paradigmatic Approach to Find Equal Sum Partitions of Zero-Divisors via Complete Graphs
著者:: M. Haris Mateen, 等
出版事項: (2022-01-01) -
Moments of zeta and correlations of divisor-sums: V
著者:: Conrey, B, 等
出版事項: (2018)