Block factor-width-two matrices and their applications to semidefinite and sum-of-squares optimization
Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In this paper, we introduce a new notion of block facto...
主要な著者: | Zheng, Y, Sootla, A, Papachristodoulou, A |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
IEEE
2022
|
類似資料
-
Decomposed structured subsets for semidefinite and sum-of-squares optimization
著者:: Miller, J, 等
出版事項: (2022) -
Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization
著者:: Zheng, Y, 等
出版事項: (2021) -
Decomposition and completion of sum-of-squares matrices
著者:: Zheng, Y, 等
出版事項: (2018) -
Equivariant Semidefinite Lifts and Sum-of-Squares Hierarchies
著者:: Fawzi, Hamza, 等
出版事項: (2016) -
Sparse sums of squares on finite abelian groups and improved semidefinite lifts
著者:: Fawzi, Hamza, 等
出版事項: (2016)