Block factor-width-two matrices and their applications to semidefinite and sum-of-squares optimization
Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In this paper, we introduce a new notion of block facto...
Главные авторы: | Zheng, Y, Sootla, A, Papachristodoulou, A |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
IEEE
2022
|
Схожие документы
-
Decomposed structured subsets for semidefinite and sum-of-squares optimization
по: Miller, J, и др.
Опубликовано: (2022) -
Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization
по: Zheng, Y, и др.
Опубликовано: (2021) -
Decomposition and completion of sum-of-squares matrices
по: Zheng, Y, и др.
Опубликовано: (2018) -
Equivariant Semidefinite Lifts and Sum-of-Squares Hierarchies
по: Fawzi, Hamza, и др.
Опубликовано: (2016) -
Sparse sums of squares on finite abelian groups and improved semidefinite lifts
по: Fawzi, Hamza, и др.
Опубликовано: (2016)