Applications and limitations of machine learning in radiation oncology
Machine learning approaches to problem-solving are growing rapidly within healthcare, and radiation oncology is no exception. With the burgeoning interest in machine learning comes the significant risk of misaligned expectations as to what it can and cannot accomplish. This paper evaluates the role...
主要な著者: | Jarrett, D, Stride, E, Vallis, K, Gooding, M |
---|---|
フォーマット: | Journal article |
出版事項: |
British Institute of Radiology
2019
|
類似資料
-
Response to letter: “Applications of artificial intelligence (AI) in radiotherapy workflow: paradigm shift in precision radiotherapy using machine learning”
著者:: Gooding, M, 等
出版事項: (2019) -
FUNDAMENTAL RADIOBIOLOGY AND ITS APPLICATION TO RADIATION ONCOLOGY
著者:: Buffa, F
出版事項: (2009) -
Biophysical models in radiation oncology /
著者:: 418919 Cohen, Lionel
出版事項: (1983) -
Radiation oncology physics, 1986 /
著者:: American Association of Physicists in Medicine. Summer School (1986 : Miami University), 等
出版事項: (1987) -
Handbook of evidence-based radiation oncology /
著者:: Hansen, Eric K., 等
出版事項: (2007)