CONFORMAL EINSTEIN-SPACES
We study conformal transformations in four-dimensional manifolds. In particular, we present a new set of two necessary and sufficient conditions for a space to be conformal to an Einstein space. The first condition defines the class of spaces conformal to C spaces, whereas the last one (the vanishin...
主要な著者: | Kozameh, C, Newman, E, Tod, K |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Kluwer Academic Publishers-Plenum Publishers
1985
|
類似資料
-
MINITWISTOR SPACES AND EINSTEIN-WEYL SPACES
著者:: Jones, P, 等
出版事項: (1985) -
Einstein-Weyl spaces and third-order differential equations
著者:: Tod, K
出版事項: (2000) -
Local heterotic geometry and self-dual Einstein-Weyl spaces
著者:: Tod, K
出版事項: (1996) -
Four-dimensional D'Atri Einstein spaces are locally symmetric
著者:: Tod, K
出版事項: (1999) -
Dimensional Reduction of Conformal Tensors and Einstein-Weyl Spaces
著者:: Roman Jackiw
出版事項: (2007-09-01)