An insoluble (p − 2)-Engel group of exponent p
<p>In 1971 Razmyslov found a beautiful construction for insoluble, locally nilpotent groups of exponent <em>p</em>(<em>p</em> ≥ 5). In 1978 Razmyslov refined his construction, and showed that it also gives insoluble groups of exponent 4. In this note we show that Razmys...
Auteur principal: | Vaughan-Lee, M |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Elsevier
2010
|
Sujets: |
Documents similaires
-
Simple module branching rules for K(Sp × Sp) and KS2p
par: Mikaelian, A
Publié: (2010) -
On counterexamples to the Hughes conjecture
par: Havas, G, et autres
Publié: (2009) -
Simple modules for groups with abelian Sylow 2-subgroups are algebraic
par: Craven, D
Publié: (2009) -
Constructing finitely presented simple groups that contain Grigorchuk groups
par: Röver, C
Publié: (1999) -
The length of conjugators in solvable groups and lattices of semisimple Lie groups
par: Sale, A, et autres
Publié: (2012)