Label efficient localization of fetal brain biometry planes in ultrasound through metric learning
For many emerging medical image analysis problems, there is limited data and associated annotations. Traditional deep learning is not well-designed for this scenario. In addition, for deploying deep models on a consumer-grade tablet, it requires models to be efficient computationally. In this paper,...
主要な著者: | Gao, Y, Beriwal, S, Craik, R, Papageorghiou, AT, Noble, JA |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Springer
2020
|
類似資料
-
A dual adversarial calibration framework for automatic fetal brain biometry
著者:: Gao, Y, 等
出版事項: (2021) -
Toward point-of-care ultrasound estimation of fetal gestational age from the trans-cerebellar diameter using CNN-based ultrasound image analysis.
著者:: Maraci, MA, 等
出版事項: (2020) -
Spatio-temporal visual attention modelling of standard biometry plane-finding navigation
著者:: Cai, Y, 等
出版事項: (2020) -
Self-supervised ultrasound to MRI fetal brain image synthesis
著者:: Jiao, J, 等
出版事項: (2020) -
AUTOMATIC DETECTION OF LOCAL FETAL BRAIN STRUCTURES IN ULTRASOUND IMAGES
著者:: Yaqub, M, 等
出版事項: (2012)