On the Rozansky-Witten TQFT

This thesis studies a potential method for constructing the Rozansky--Witten TQFT as an extended $(1+1+1)$-TQFT. A monoidal $2$-category consisting of schemes, complexes of sheaves and sheaf morphisms is constructed, and it is shown that there are $(1+1)$-TQFTs valued in the truncation of this categ...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Banks, P
অন্যান্য লেখক: Juhasz, A
বিন্যাস: গবেষণাপত্র
ভাষা:English
প্রকাশিত: 2020
বিষয়গুলি:
বিবরন
সংক্ষিপ্ত:This thesis studies a potential method for constructing the Rozansky--Witten TQFT as an extended $(1+1+1)$-TQFT. A monoidal $2$-category consisting of schemes, complexes of sheaves and sheaf morphisms is constructed, and it is shown that there are $(1+1)$-TQFTs valued in the truncation of this category, whose state spaces agree with the Rozansky--Witten TQFT. However, it is also shown that if such a TQFT is based on a reduced Noetherian scheme, it cannot be extended upwards to a $(1+1+1)$-TQFT.