On the Rozansky-Witten TQFT
This thesis studies a potential method for constructing the Rozansky--Witten TQFT as an extended $(1+1+1)$-TQFT. A monoidal $2$-category consisting of schemes, complexes of sheaves and sheaf morphisms is constructed, and it is shown that there are $(1+1)$-TQFTs valued in the truncation of this categ...
第一著者: | Banks, P |
---|---|
その他の著者: | Juhasz, A |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2020
|
主題: |
類似資料
-
1 + 1 dimensional cobordism categories and invertible TQFT for Klein surfaces
著者:: Juer, R
出版事項: (2012) -
Pin TQFT and Grassmann integral
著者:: Ryohei Kobayashi
出版事項: (2019-12-01) -
Revisiting the Melvin-Morton-Rozansky expansion, or there and back again
著者:: Sibasish Banerjee, 等
出版事項: (2020-12-01) -
TQFT gravity and ensemble holography
著者:: Anatoly Dymarsky, 等
出版事項: (2025-02-01) -
G 2 holonomy, Taubes’ construction of Seiberg-Witten invariants and superconducting vortices
著者:: Sergio Cecotti, 等
出版事項: (2020-04-01)