Deep learning predicts heart failure with preserved, mid-range, and reduced left ventricular ejection fraction from patient clinical profiles
Background: Left ventricular ejection fraction (LVEF) is the gold standard for evaluating heart failure (HF) in coronary artery disease (CAD) patients. It is an essential metric in categorizing HF patients as preserved (HFpEF), mid-range (HFmEF), and reduced (HFrEF) ejection fraction but differs, de...
Egile Nagusiak: | Alkhodari, M, Jelinek, HF, Karlas, A, Soulaidopoulos, S, Arsenos, P, Doundoulakis, I, Gatzoulis, KA, Tsioufis, K, Hadjileontiadis, LJ, Khandoker, AH |
---|---|
Formatua: | Journal article |
Hizkuntza: | English |
Argitaratua: |
Frontiers Media
2021
|
Antzeko izenburuak
-
Deep Learning Predicts Heart Failure With Preserved, Mid-Range, and Reduced Left Ventricular Ejection Fraction From Patient Clinical Profiles
nork: Mohanad Alkhodari, et al.
Argitaratua: (2021-11-01) -
Revisiting left ventricular ejection fraction levels: a circadian heart rate variability-based approach
nork: Alkhodari, M, et al.
Argitaratua: (2021) -
Prediction of heart failure patients with distinct left ventricular ejection fraction levels using circadian ECG features and machine learning
nork: Sona M. Al Younis, et al.
Argitaratua: (2024-01-01) -
Investigating automated regression models for estimating left ventricular ejection fraction levels in heart failure patients using circadian ECG features
nork: Sona M. Al Younis, et al.
Argitaratua: (2023-01-01) -
Revisiting Left Ventricular Ejection Fraction Levels: A Circadian Heart Rate Variability-Based Approach
nork: Mohanad Alkhodari, et al.
Argitaratua: (2021-01-01)