Deep learning predicts heart failure with preserved, mid-range, and reduced left ventricular ejection fraction from patient clinical profiles
Background: Left ventricular ejection fraction (LVEF) is the gold standard for evaluating heart failure (HF) in coronary artery disease (CAD) patients. It is an essential metric in categorizing HF patients as preserved (HFpEF), mid-range (HFmEF), and reduced (HFrEF) ejection fraction but differs, de...
主要な著者: | Alkhodari, M, Jelinek, HF, Karlas, A, Soulaidopoulos, S, Arsenos, P, Doundoulakis, I, Gatzoulis, KA, Tsioufis, K, Hadjileontiadis, LJ, Khandoker, AH |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Frontiers Media
2021
|
類似資料
-
Deep Learning Predicts Heart Failure With Preserved, Mid-Range, and Reduced Left Ventricular Ejection Fraction From Patient Clinical Profiles
著者:: Mohanad Alkhodari, 等
出版事項: (2021-11-01) -
Revisiting left ventricular ejection fraction levels: a circadian heart rate variability-based approach
著者:: Alkhodari, M, 等
出版事項: (2021) -
Prediction of heart failure patients with distinct left ventricular ejection fraction levels using circadian ECG features and machine learning
著者:: Sona M. Al Younis, 等
出版事項: (2024-01-01) -
Investigating automated regression models for estimating left ventricular ejection fraction levels in heart failure patients using circadian ECG features
著者:: Sona M. Al Younis, 等
出版事項: (2023-01-01) -
Revisiting Left Ventricular Ejection Fraction Levels: A Circadian Heart Rate Variability-Based Approach
著者:: Mohanad Alkhodari, 等
出版事項: (2021-01-01)