Deep learning predicts heart failure with preserved, mid-range, and reduced left ventricular ejection fraction from patient clinical profiles
Background: Left ventricular ejection fraction (LVEF) is the gold standard for evaluating heart failure (HF) in coronary artery disease (CAD) patients. It is an essential metric in categorizing HF patients as preserved (HFpEF), mid-range (HFmEF), and reduced (HFrEF) ejection fraction but differs, de...
Main Authors: | Alkhodari, M, Jelinek, HF, Karlas, A, Soulaidopoulos, S, Arsenos, P, Doundoulakis, I, Gatzoulis, KA, Tsioufis, K, Hadjileontiadis, LJ, Khandoker, AH |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Frontiers Media
2021
|
Registos relacionados
-
Deep Learning Predicts Heart Failure With Preserved, Mid-Range, and Reduced Left Ventricular Ejection Fraction From Patient Clinical Profiles
Por: Mohanad Alkhodari, et al.
Publicado em: (2021-11-01) -
Revisiting left ventricular ejection fraction levels: a circadian heart rate variability-based approach
Por: Alkhodari, M, et al.
Publicado em: (2021) -
Prediction of heart failure patients with distinct left ventricular ejection fraction levels using circadian ECG features and machine learning
Por: Sona M. Al Younis, et al.
Publicado em: (2024-01-01) -
Investigating automated regression models for estimating left ventricular ejection fraction levels in heart failure patients using circadian ECG features
Por: Sona M. Al Younis, et al.
Publicado em: (2023-01-01) -
Revisiting Left Ventricular Ejection Fraction Levels: A Circadian Heart Rate Variability-Based Approach
Por: Mohanad Alkhodari, et al.
Publicado em: (2021-01-01)