Deep learning predicts heart failure with preserved, mid-range, and reduced left ventricular ejection fraction from patient clinical profiles
Background: Left ventricular ejection fraction (LVEF) is the gold standard for evaluating heart failure (HF) in coronary artery disease (CAD) patients. It is an essential metric in categorizing HF patients as preserved (HFpEF), mid-range (HFmEF), and reduced (HFrEF) ejection fraction but differs, de...
Главные авторы: | Alkhodari, M, Jelinek, HF, Karlas, A, Soulaidopoulos, S, Arsenos, P, Doundoulakis, I, Gatzoulis, KA, Tsioufis, K, Hadjileontiadis, LJ, Khandoker, AH |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Frontiers Media
2021
|
Схожие документы
-
Deep Learning Predicts Heart Failure With Preserved, Mid-Range, and Reduced Left Ventricular Ejection Fraction From Patient Clinical Profiles
по: Mohanad Alkhodari, и др.
Опубликовано: (2021-11-01) -
Revisiting left ventricular ejection fraction levels: a circadian heart rate variability-based approach
по: Alkhodari, M, и др.
Опубликовано: (2021) -
Prediction of heart failure patients with distinct left ventricular ejection fraction levels using circadian ECG features and machine learning
по: Sona M. Al Younis, и др.
Опубликовано: (2024-01-01) -
Investigating automated regression models for estimating left ventricular ejection fraction levels in heart failure patients using circadian ECG features
по: Sona M. Al Younis, и др.
Опубликовано: (2023-01-01) -
Revisiting Left Ventricular Ejection Fraction Levels: A Circadian Heart Rate Variability-Based Approach
по: Mohanad Alkhodari, и др.
Опубликовано: (2021-01-01)