Discrete representations of continuous data using deep learning and clustering
<p>The divide between continuous and discrete data is a fundamental one in computer science and mathematics, as well as related areas such as cognitive science. Historically, most of computing has operated in the discrete domain, but connectionism offers an alternative set of techniques for re...
第一著者: | Mahon, L |
---|---|
その他の著者: | Lukasiewicz, T |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2022
|
主題: |
類似資料
-
Influence of the input data on learning deep representations
著者:: Sylvestre-Alvise Rebuffi
出版事項: (2020) -
DEEP LEARNING /
著者:: Kelleher, John D., author 637754
出版事項: (2019) -
Continual learning for efficient machine learning
著者:: Chaudhry, A
出版事項: (2020) -
Machine learning and deep learning methods that use omics data for metastasis prediction
著者:: Somayah Albaradei, 等
出版事項: (2021-01-01) -
Learning Distributed Representations and Deep Embedded Clustering of Texts
著者:: Shuang Wang, 等
出版事項: (2023-03-01)