Proof of Komlós's conjecture on Hamiltonian subsets
Komlós conjectured in 1981 that among all graphs with minimum degree at least d, the complete graph K d+1 minimises the number of Hamiltonian subsets, where a subset of vertices is Hamiltonian if it contains a spanning cycle. We prove this conjecture when d is sufficiently large. In fact we prove a...
Главные авторы: | Kim, J, Liu, H, Sharifzadeh, M, Staden, K |
---|---|
Формат: | Journal article |
Опубликовано: |
London Mathematical Society
2017
|
Схожие документы
-
A Proof of Komlós Theorem for Super-Reflexive Valued Random Variables
по: Abdessamad Dehaj, и др.
Опубликовано: (2020-09-01) -
On the Komlós–Révész SLLN for Ψ-Mixing Sequences
по: Zbigniew S. Szewczak
Опубликовано: (2025-01-01) -
A new sufficient condition for a Digraph to be Hamiltonian-A proof of Manoussakis Conjecture
по: Samvel Kh. Darbinyan
Опубликовано: (2021-01-01) -
Analysis about the Concept of Taste's Formators. An Interpretation of Komlos' Vision
по: MIHAELA IOANA GURĂU
Опубликовано: (2021-12-01) -
Conjecture and proof /
по: 181611 Laczkovich, Miklos
Опубликовано: (2001)