Homogenization of random quasiconformal mappings and random delauney triangulations
In this paper, we solve two problems dealing with the homogenization of random media. We show that a random quasiconformal mapping is close to an affine mapping, while a circle packing of a random Delauney triangulation is close to a conformal map, confirming a conjecture of K. Stephenson. We also s...
Asıl Yazarlar: | , |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
International Press
2023
|
Özet: | In this paper, we solve two problems dealing with the homogenization of random media. We show that a random quasiconformal mapping is close to an affine mapping, while a circle packing of a random Delauney triangulation is close to a conformal map, confirming a conjecture of K. Stephenson. We also show that on a Riemann surface equipped with a conformal metric, a random Delauney triangulation is close to being circle packed. |
---|