On neural differential equations
<p>The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a s...
Κύριος συγγραφέας: | Kidger, P |
---|---|
Άλλοι συγγραφείς: | Lyons, T |
Μορφή: | Thesis |
Γλώσσα: | English |
Έκδοση: |
2021
|
Θέματα: |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Learning nonlinear integral operators via recurrent neural networks and its application in solving integro-differential equations
ανά: Hardeep Bassi, κ.ά.
Έκδοση: (2024-03-01) -
Stochastic ordinary and stochastic partial differential equations : transition from microscopic to macroscopic equations /
ανά: 272186 Kotelenez, Peter
Έκδοση: (2008) -
Stochastic stability of differential equations : translated by D. Louvish /
ανά: Has'minskii, R. Z., κ.ά.
Έκδοση: (1980) -
Stochastic Runge-Kutta method for stochastic delay differential equations /
ανά: Norhayati Rosli, 1981-
Έκδοση: (2012) -
Stochastic Runge-Kutta method for stochastic delay differential equations /
ανά: Norhayati Rosli, 1981-, κ.ά.
Έκδοση: (2012)