On neural differential equations
<p>The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a s...
1. Verfasser: | Kidger, P |
---|---|
Weitere Verfasser: | Lyons, T |
Format: | Abschlussarbeit |
Sprache: | English |
Veröffentlicht: |
2021
|
Schlagworte: |
Ähnliche Einträge
-
Learning nonlinear integral operators via recurrent neural networks and its application in solving integro-differential equations
von: Hardeep Bassi, et al.
Veröffentlicht: (2024-03-01) -
Stochastic ordinary and stochastic partial differential equations : transition from microscopic to macroscopic equations /
von: 272186 Kotelenez, Peter
Veröffentlicht: (2008) -
Stochastic stability of differential equations : translated by D. Louvish /
von: Has'minskii, R. Z., et al.
Veröffentlicht: (1980) -
Stochastic Runge-Kutta method for stochastic delay differential equations /
von: Norhayati Rosli, 1981-
Veröffentlicht: (2012) -
Stochastic Runge-Kutta method for stochastic delay differential equations /
von: Norhayati Rosli, 1981-, et al.
Veröffentlicht: (2012)