GPz: Non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
The next generation of cosmology experiments will be required to use photometric redshifts rather than spectroscopic redshifts. Obtaining accurate and well-characterized photometric redshift distributions is therefore critical for Euclid, the Large Synoptic Survey Telescope and the Square Kilometre...
Autors principals: | Almosallam, I, Jarvis, M, Roberts, S |
---|---|
Format: | Journal article |
Publicat: |
Oxford University Press
2016
|
Ítems similars
-
GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
per: Almosallam, I, et al.
Publicat: (2016) -
Improving Photometric Redshift Estimation using GPz: size information,
post processing and improved photometry
per: Gomes, Z, et al.
Publicat: (2017) -
A Sparse Gaussian Process Framework for Photometric Redshift Estimation
per: Almosallam, I, et al.
Publicat: (2015) -
Augmenting machine learning photometric redshifts with Gaussian mixture models
per: Hatfield, PW, et al.
Publicat: (2020) -
Photometric redshift estimation using Gaussian processes
per: Bonfield, D, et al.
Publicat: (2010)