Testing and learning on distributional and set inputs
<p>As machine learning gains significant attention in many disciplines and research communities, the variety of data structures has increased, with examples including distributions and sets of observations. In this thesis, we consider sets and distributions as inputs for machine learning pr...
المؤلف الرئيسي: | Law, H |
---|---|
مؤلفون آخرون: | Sejdinovic, D |
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2019
|
الموضوعات: |
مواد مشابهة
-
Utilizing Statistical Tests for Comparing Machine Learning Algorithms
حسب: Hozan Khalid Hamarashid
منشور في: (2021-07-01) -
The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
حسب: Natália V N Rodrigues, وآخرون
منشور في: (2023-01-01) -
Towards trustworthy machine learning with kernels
حسب: Chau, SL
منشور في: (2023) -
Towards data-efficient deep learning with meta-learning and symmetries
حسب: Xu, J
منشور في: (2023) -
Kernel-based hypothesis tests: large-scale approximations and Bayesian perspectives
حسب: Zhang, Q
منشور في: (2019)