Testing and learning on distributional and set inputs
<p>As machine learning gains significant attention in many disciplines and research communities, the variety of data structures has increased, with examples including distributions and sets of observations. In this thesis, we consider sets and distributions as inputs for machine learning pr...
Hovedforfatter: | Law, H |
---|---|
Andre forfattere: | Sejdinovic, D |
Format: | Thesis |
Sprog: | English |
Udgivet: |
2019
|
Fag: |
Lignende værker
-
Utilizing Statistical Tests for Comparing Machine Learning Algorithms
af: Hozan Khalid Hamarashid
Udgivet: (2021-07-01) -
The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
af: Natália V N Rodrigues, et al.
Udgivet: (2023-01-01) -
Towards trustworthy machine learning with kernels
af: Chau, SL
Udgivet: (2023) -
Towards data-efficient deep learning with meta-learning and symmetries
af: Xu, J
Udgivet: (2023) -
Kernel-based hypothesis tests: large-scale approximations and Bayesian perspectives
af: Zhang, Q
Udgivet: (2019)