Testing and learning on distributional and set inputs
<p>As machine learning gains significant attention in many disciplines and research communities, the variety of data structures has increased, with examples including distributions and sets of observations. In this thesis, we consider sets and distributions as inputs for machine learning pr...
1. Verfasser: | Law, H |
---|---|
Weitere Verfasser: | Sejdinovic, D |
Format: | Abschlussarbeit |
Sprache: | English |
Veröffentlicht: |
2019
|
Schlagworte: |
Ähnliche Einträge
Ähnliche Einträge
-
Utilizing Statistical Tests for Comparing Machine Learning Algorithms
von: Hozan Khalid Hamarashid
Veröffentlicht: (2021-07-01) -
The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
von: Natália V N Rodrigues, et al.
Veröffentlicht: (2023-01-01) -
Towards trustworthy machine learning with kernels
von: Chau, SL
Veröffentlicht: (2023) -
Towards data-efficient deep learning with meta-learning and symmetries
von: Xu, J
Veröffentlicht: (2023) -
Kernel-based hypothesis tests: large-scale approximations and Bayesian perspectives
von: Zhang, Q
Veröffentlicht: (2019)