Testing and learning on distributional and set inputs
<p>As machine learning gains significant attention in many disciplines and research communities, the variety of data structures has increased, with examples including distributions and sets of observations. In this thesis, we consider sets and distributions as inputs for machine learning pr...
Κύριος συγγραφέας: | Law, H |
---|---|
Άλλοι συγγραφείς: | Sejdinovic, D |
Μορφή: | Thesis |
Γλώσσα: | English |
Έκδοση: |
2019
|
Θέματα: |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Utilizing Statistical Tests for Comparing Machine Learning Algorithms
ανά: Hozan Khalid Hamarashid
Έκδοση: (2021-07-01) -
The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
ανά: Natália V N Rodrigues, κ.ά.
Έκδοση: (2023-01-01) -
Towards trustworthy machine learning with kernels
ανά: Chau, SL
Έκδοση: (2023) -
Towards data-efficient deep learning with meta-learning and symmetries
ανά: Xu, J
Έκδοση: (2023) -
Kernel-based hypothesis tests: large-scale approximations and Bayesian perspectives
ανά: Zhang, Q
Έκδοση: (2019)