Testing and learning on distributional and set inputs
<p>As machine learning gains significant attention in many disciplines and research communities, the variety of data structures has increased, with examples including distributions and sets of observations. In this thesis, we consider sets and distributions as inputs for machine learning pr...
Päätekijä: | Law, H |
---|---|
Muut tekijät: | Sejdinovic, D |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
2019
|
Aiheet: |
Samankaltaisia teoksia
-
Utilizing Statistical Tests for Comparing Machine Learning Algorithms
Tekijä: Hozan Khalid Hamarashid
Julkaistu: (2021-07-01) -
The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
Tekijä: Natália V N Rodrigues, et al.
Julkaistu: (2023-01-01) -
Towards trustworthy machine learning with kernels
Tekijä: Chau, SL
Julkaistu: (2023) -
Towards data-efficient deep learning with meta-learning and symmetries
Tekijä: Xu, J
Julkaistu: (2023) -
Kernel-based hypothesis tests: large-scale approximations and Bayesian perspectives
Tekijä: Zhang, Q
Julkaistu: (2019)