Testing and learning on distributional and set inputs
<p>As machine learning gains significant attention in many disciplines and research communities, the variety of data structures has increased, with examples including distributions and sets of observations. In this thesis, we consider sets and distributions as inputs for machine learning pr...
מחבר ראשי: | Law, H |
---|---|
מחברים אחרים: | Sejdinovic, D |
פורמט: | Thesis |
שפה: | English |
יצא לאור: |
2019
|
נושאים: |
פריטים דומים
-
Utilizing Statistical Tests for Comparing Machine Learning Algorithms
מאת: Hozan Khalid Hamarashid
יצא לאור: (2021-07-01) -
The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
מאת: Natália V N Rodrigues, et al.
יצא לאור: (2023-01-01) -
Towards trustworthy machine learning with kernels
מאת: Chau, SL
יצא לאור: (2023) -
Towards data-efficient deep learning with meta-learning and symmetries
מאת: Xu, J
יצא לאור: (2023) -
Kernel-based hypothesis tests: large-scale approximations and Bayesian perspectives
מאת: Zhang, Q
יצא לאור: (2019)