Testing and learning on distributional and set inputs
<p>As machine learning gains significant attention in many disciplines and research communities, the variety of data structures has increased, with examples including distributions and sets of observations. In this thesis, we consider sets and distributions as inputs for machine learning pr...
Hoofdauteur: | Law, H |
---|---|
Andere auteurs: | Sejdinovic, D |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
2019
|
Onderwerpen: |
Gelijkaardige items
-
Utilizing Statistical Tests for Comparing Machine Learning Algorithms
door: Hozan Khalid Hamarashid
Gepubliceerd in: (2021-07-01) -
The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
door: Natália V N Rodrigues, et al.
Gepubliceerd in: (2023-01-01) -
Towards trustworthy machine learning with kernels
door: Chau, SL
Gepubliceerd in: (2023) -
Towards data-efficient deep learning with meta-learning and symmetries
door: Xu, J
Gepubliceerd in: (2023) -
Kernel-based hypothesis tests: large-scale approximations and Bayesian perspectives
door: Zhang, Q
Gepubliceerd in: (2019)