Testing and learning on distributional and set inputs
<p>As machine learning gains significant attention in many disciplines and research communities, the variety of data structures has increased, with examples including distributions and sets of observations. In this thesis, we consider sets and distributions as inputs for machine learning pr...
Главный автор: | Law, H |
---|---|
Другие авторы: | Sejdinovic, D |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2019
|
Предметы: |
Схожие документы
-
Utilizing Statistical Tests for Comparing Machine Learning Algorithms
по: Hozan Khalid Hamarashid
Опубликовано: (2021-07-01) -
The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
по: Natália V N Rodrigues, и др.
Опубликовано: (2023-01-01) -
Towards trustworthy machine learning with kernels
по: Chau, SL
Опубликовано: (2023) -
Towards data-efficient deep learning with meta-learning and symmetries
по: Xu, J
Опубликовано: (2023) -
Kernel-based hypothesis tests: large-scale approximations and Bayesian perspectives
по: Zhang, Q
Опубликовано: (2019)