Testing and learning on distributional and set inputs
<p>As machine learning gains significant attention in many disciplines and research communities, the variety of data structures has increased, with examples including distributions and sets of observations. In this thesis, we consider sets and distributions as inputs for machine learning pr...
Huvudupphovsman: | Law, H |
---|---|
Övriga upphovsmän: | Sejdinovic, D |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
2019
|
Ämnen: |
Liknande verk
Liknande verk
-
Utilizing Statistical Tests for Comparing Machine Learning Algorithms
av: Hozan Khalid Hamarashid
Publicerad: (2021-07-01) -
The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
av: Natália V N Rodrigues, et al.
Publicerad: (2023-01-01) -
Towards trustworthy machine learning with kernels
av: Chau, SL
Publicerad: (2023) -
Towards data-efficient deep learning with meta-learning and symmetries
av: Xu, J
Publicerad: (2023) -
Kernel-based hypothesis tests: large-scale approximations and Bayesian perspectives
av: Zhang, Q
Publicerad: (2019)