Testing and learning on distributional and set inputs
<p>As machine learning gains significant attention in many disciplines and research communities, the variety of data structures has increased, with examples including distributions and sets of observations. In this thesis, we consider sets and distributions as inputs for machine learning pr...
Tác giả chính: | Law, H |
---|---|
Tác giả khác: | Sejdinovic, D |
Định dạng: | Luận văn |
Ngôn ngữ: | English |
Được phát hành: |
2019
|
Những chủ đề: |
Những quyển sách tương tự
-
Utilizing Statistical Tests for Comparing Machine Learning Algorithms
Bằng: Hozan Khalid Hamarashid
Được phát hành: (2021-07-01) -
The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
Bằng: Natália V N Rodrigues, et al.
Được phát hành: (2023-01-01) -
Towards trustworthy machine learning with kernels
Bằng: Chau, SL
Được phát hành: (2023) -
Towards data-efficient deep learning with meta-learning and symmetries
Bằng: Xu, J
Được phát hành: (2023) -
Kernel-based hypothesis tests: large-scale approximations and Bayesian perspectives
Bằng: Zhang, Q
Được phát hành: (2019)