On an Erdős–Kac-type conjecture of Elliott
Elliott and Halberstam proved that $\sum_{p \lt n} 2^{\omega(n-p)}$ is asymptotic to $\phi(n)$. In analogy to the Erdős–Kac theorem, Elliott conjectured that if one restricts the summation to primes p such that $\omega(n-p)\le 2 \log \log n+\lambda(2\log \log n)^{1/2}$ then the sum will be asymptoti...
Главные авторы: | Gorodetsky, O, Grimmelt, L |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Oxford University Press
2024
|
Схожие документы
-
On a conjecture of Erdős
по: Chen, Yong-Gao, и др.
Опубликовано: (2022-09-01) -
The Cameron-Erdos Conjecture
по: Green, B
Опубликовано: (2003) -
Analytic Erdös-Turán conjectures and Erdös-Fuchs theorem
по: L. Haddad, и др.
Опубликовано: (2005-01-01) -
The Erdős-Sós conjecture for geometric graphs
по: Luis Barba, и др.
Опубликовано: (2013-02-01) -
Kac's conjecture from Nakajima quiver varieties
по: Hausel, T
Опубликовано: (2008)