uCAP: an unsupervised prompting method for vision-language models
This paper addresses a significant limitation that prevents Contrastive Language-Image Pretrained Models (CLIP) from achieving optimal performance on downstream image classification tasks. The key problem with CLIP-style zero-shot classification is that it requires domain-specific context in the for...
Egile Nagusiak: | Nguyen, AT, Tai, KS, Chen, BC, Shukla, SN, Yu, H, Torr, P, Tian, TP, Lim, SN |
---|---|
Formatua: | Conference item |
Hizkuntza: | English |
Argitaratua: |
Springer
2024
|
Antzeko izenburuak
-
Berat ucap terima kasih
nork: Berita Harian , Noor Mohamad Shakil Hameed
Argitaratua: (2012) -
NAIB CANSELOR UCAP TAHNIAH DAN PENGHARGAAN
nork: MPRC, Pusat Media & Perhubungan Awam
Argitaratua: (2016) -
PM ucap tahniah kepada lima universiti
nork: Utusan Malaysia,
Argitaratua: (2014) -
An image is worth 1000 lies: adversarial transferability across prompts on vision-language models
nork: Luo, H, et al.
Argitaratua: (2024) -
Ucap perdana I : 20 tahun bersama Mahathir /
nork: Musa Hitam, Tan Sri, 1934- author
Argitaratua: (2007)