Geodesics and compression bodies

We consider hyperbolic structures on the compression body C with genus 2 positive boundary and genus 1 negative boundary. Note that C deformation retracts to the union of the torus boundary and a single arc with its endpoints on the torus. We call this arc the core tunnel of C. We conjecture that, i...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Lackenby, M, Purcell, J
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: Taylor and Francis Inc. 2013
Miêu tả
Tóm tắt:We consider hyperbolic structures on the compression body C with genus 2 positive boundary and genus 1 negative boundary. Note that C deformation retracts to the union of the torus boundary and a single arc with its endpoints on the torus. We call this arc the core tunnel of C. We conjecture that, in any geometrically finite structure on C, the core tunnel is isotopic to a geodesic. By considering Ford domains, we show this conjecture holds for many geometrically finite structures. Additionally, we give an algorithm to compute the Ford domain of such a manifold, and a procedure which has been implemented to visualize many of these Ford domains. Our computer implementation gives further evidence for the conjecture.