Sharp worst-case evaluation complexity bounds for arbitrary-order nonconvex optimization with inexpensive constraints
We provide sharp worst-case evaluation complexity bounds for nonconvex minimization problems with general inexpensive constraints, i.e., problems where the cost of evaluating/enforcing of the (possibly nonconvex or even disconnected) constraints, if any, is negligible compared to that of evaluating...
Автори: | Cartis, C, Gould, N, Toint, P |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
Society for Industrial and Applied Mathematics
2020
|
Схожі ресурси
Схожі ресурси
-
Worst-case evaluation complexity and optimality of second-order methods for nonconvex smooth optimization
за авторством: Cartis, C, та інші
Опубліковано: (2018) -
An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity
за авторством: Cartis, C, та інші
Опубліковано: (2012) -
On the Oracle Complexity of First-Order and Derivative-Free Algorithms for Smooth Nonconvex Minimization.
за авторством: Cartis, C, та інші
Опубліковано: (2012) -
Complexity bounds for second-order optimality in unconstrained optimization.
за авторством: Cartis, C, та інші
Опубліковано: (2012) -
On the Complexity of Steepest Descent, Newton's and Regularized Newton's Methods for Nonconvex Unconstrained Optimization Problems.
за авторством: Cartis, C, та інші
Опубліковано: (2010)