End-to-end learning, and audio-visual human-centric video understanding
<p>The field of machine learning has seen tremendous progress in the last decade, largely due to the advent of deep neural networks. When trained on large-scale labelled datasets, these machine learning algorithms can learn powerful semantic representations directly from the input data, end-to...
Yazar: | Brown, A |
---|---|
Diğer Yazarlar: | Zisserman, A |
Materyal Türü: | Tez |
Dil: | English |
Baskı/Yayın Bilgisi: |
2022
|
Konular: |
Benzer Materyaller
-
Sign language understanding using multimodal learning
Yazar:: Momeni, L
Baskı/Yayın Bilgisi: (2024) -
Video understanding using multimodal deep learning
Yazar:: Nagrani, A
Baskı/Yayın Bilgisi: (2020) -
Deep vision for indoor understanding and localisation
Yazar:: Howard-Jenkins, H
Baskı/Yayın Bilgisi: (2022) -
END TO END LEARNING FOR A DRIVING SIMULATOR
Yazar:: V. F. Alexeev, ve diğerleri
Baskı/Yayın Bilgisi: (2019-06-01) -
Self-Supervised Learning for Audio-Visual Relationships of Videos With Stereo Sounds
Yazar:: Tomoya Sato, ve diğerleri
Baskı/Yayın Bilgisi: (2022-01-01)