End-to-end learning, and audio-visual human-centric video understanding
<p>The field of machine learning has seen tremendous progress in the last decade, largely due to the advent of deep neural networks. When trained on large-scale labelled datasets, these machine learning algorithms can learn powerful semantic representations directly from the input data, end-to...
主要作者: | Brown, A |
---|---|
其他作者: | Zisserman, A |
格式: | Thesis |
語言: | English |
出版: |
2022
|
主題: |
相似書籍
-
Sign language understanding using multimodal learning
由: Momeni, L
出版: (2024) -
Video understanding using multimodal deep learning
由: Nagrani, A
出版: (2020) -
Deep vision for indoor understanding and localisation
由: Howard-Jenkins, H
出版: (2022) -
END TO END LEARNING FOR A DRIVING SIMULATOR
由: V. F. Alexeev, et al.
出版: (2019-06-01) -
Self-Supervised Learning for Audio-Visual Relationships of Videos With Stereo Sounds
由: Tomoya Sato, et al.
出版: (2022-01-01)